Dark Matter Experiments at the Fermilab Center for Particle Astrophysics

Emphasis

- Why do this project at Fermilab?
- What are the risks?
- What are the next steps?
- Direct Detection of Dark Matter
 - CDMS
 - COUPP

The Dark Matter Problem

- Overwhelming evidence of the dark matter problem in astronomical observations
- One of the most rapidly growing fields of research in experimental particle physics

The Dark Matter Solution

- ~1:4 luminous baryonic matter:non-baryonic dark matter is an attractive solution to the dark matter problem
- Weakly Interacting Massive Particles are the favored solution to the problem today
- The problem may even be with our understanding of gravity

Direct Detection of WIMPs

- Rare event search (events per 10 kilogram years -> planning ahead for events per tonne year)
- Neutral elastic scattering, so focus on building massive, clean neutron detectors focusing on 1-100 keV nuclear recoils

A Center for WIMP Detection

CDMS

- Recent sensitive limits for spin-independent WIMP-nucleus elastic scattering
- Recent axion limits

COUPP

- Recent sensitive limits for spin-dependent WIMP-nucleus elastic scattering at low WIMP mass
- Rapidly increasing target mass and reducing backgrounds

Infrastructure

Fermilab maintains two underground experimental areas:
 MINOS near hall and Soudan laboratory

Research and Development

- DAMIC, Depleted Argon TPC, Solid Xenon
- See talks on Saturday for details

The Cryogenic Dark Matter Search

- CDMS is leading the field of direct detection of dark matter
- Based on cryogenic germanium and silicon crystals
- Latest results show the power of the technique for discovery

The CDMS Collaboration

Caltech

Z. Ahmed, S. Golwala, D. Moore, R.W. Ogburn

Case Western Reserve University

D. Akerib, C. Bailey, K. Clark, M. Danowski, M. Dragowsky, D. Grant, R. Hennings-Yeomans

Fermilab

D. Bauer, F. DeJongh, J. Hall, D. Holmgren, L. Hsu, E. Ramberg, R. Schmitt, J. Yoo

MIT

E. Figueroa-Feliciano, S. Hertel, S. Leman, K. McCarthy, P. Wikus

Queens University

W. Rau

Santa Clara University

B. Young

Stanford University

P.L. Brink, **B. Cabrera**, J. Cooley, L. Novak, M. Pyle, A. Tomada, S. Yellin

Syracuse University

M.Kiveni, M. Kos, R. Schnee

University of California, Berkeley

M. Daal, J. Filippini, N. Mirabolfathi, **B. Sadoulet**, D. Seitz, B. Serfass, K. Sundqvist

University of California, Santa Barbara

R. Bunker, D. Caldwell, R. Mahapatra, H. Nelson, J. Sander

University of Colorado, Denver

B. Hines, M. Huber

University of Florida

A. Achelashvili, D. Balakishiyeva, T. Saab, G. Sardane

University of Minnesota

J. Beaty, **P. Cushman**, L. Duong, M. Fritts, O. Kamaev, **V. Mandic**, X. Qiu, A. Reisetter

University of Zurich

S. Arrenberg, T. Bruch, L. Baudis, M. Tarka

The CDMS Technology

- Measure energy deposited in the form of liberated charge carriers in silicon and germanium semiconductors
- Measure the total energy deposited bolometrically
- Use high bandwidth phonon sensors to identify events with poor ionization collection

The CDMS Technology

Excellent background rejection and shielding lead to zero candidate events in latest data

FCPA Retreat, April 2009

Phonon sensor

Recoil energy

Ionization energy

Fermilab Involvement in CDMS

- Heavily involved in almost every aspect of CDMS
 - Soudan laboratory and operations
 - Project management
 - Data storage and analysis
 - Mechanical and electrical engineering
- Only detector fabrication and testing are not done at Fermilab
 - Fabrication at Stanford
 - UC Berkeley leads testing group that includes UFlorida and Queens University

Latest CDMS Results

- The leading limit on spin independent WIMPnucleus elastic scattering cross-section
- PRL **102**:011301 (2009)
- Only competitive background free result demonstrating the discovery power of CDMS

CDMS Solar Axion Search

 Search for Solar axions in referee process (arXiv:0902.4693)

FCPA Retreat, April 2009

CDMS Low Threshold

- Standard running with 0.5 keV threshold under analysis
- Dedicated run with 0.05 keV threshold under analysis
- Neutrino detection possibilities

SuperCDMS

- New detectors are being installed (this week) in Soudan cryostat
- Detectors are 2.5 times larger (625 grams each)
- Detector fabrication output has increased (political situation is critical path item)

SuperCDMS

- Electronics have been modernized
- Order of magnitude reduction in cost
- Minimization of cables and connectors
- Enabling test facilities at University of Florida and Queens University

SuperCDMS Risks

- Perception that scaling CDMS technology to larger masses is more difficult than other competitive technologies (liquid detectors)
- Backgrounds will soon become unmanageable
 - Surface events
 - Neutrons (radiogenic and cosmogenic)

Chicagoland Observatory for Underground Particle Physics

- The return of the bubble chamber
- Latest results are competitive in spin-dependent parameter space
- New devices will answer key technical questions

The COUPP Collaboration

Graduate Students:
Nathan Riley
Matthew Szydagis

Undergraduates:
Luke Goetzke
Hannes
Schimmelpfennig

KICP Fellows: Brian Odom

Wilson Fellows:

Andrew Sonnenschein

Staff Scientists:

Peter Cooper

Mike Crisler

Martin Hu

Erik Ramberg

Bob Tschirhart

Principal Investigator:
Ilan Levine

Undergraduates:
Earl Neeley
Tina Marie Shepherd

Engineers: Ed Behnke

National Science Foundation
Kavli Institute for Cosmological Physics
Department of Energy

COUPP Technology

- 1. Large target masses may be possible.
 - Multi ton chambers were built in the 50's-80's.
- 2. An exciting menu of available target nuclei.
 - Most common: Hydrogen, Propane
 - But also "Heavy Liquids": Xe, Ne, CF_3Br , CH_3I , and CCl_2F_2 .
 - Good targets for both spin- dependent and spin-independent scattering.
 - Possible to "swap" liquids to check suspicious signals.
- 3. Low energy thresholds are easily obtained for nuclear recoils.
 - < 10 keV easy to achieve according to standard nucleation theory.
- 4. <u>Backgrounds due to environmental gamma and beta activity can be suppressed by running at low pressure.</u>

COUPP Technology

- dE/dX difference between nuclear and electronic recoils
- a low pressure chamber is insensitive to electron recoils

COUPP Technology

High speed cameras monitor for single bubbles

COUPP Results - 2006 Run

- Scan over pressures (thresholds) to create a integral spectrum
- Alphas have large dE/dX and pose a background issue

COUPP Results - 2006 Run

- Science **319**, 933-936 (2008)
- Competitive spin-dependent limits due to Flourine target

Fermilab Involvement in COUPP

- MINOS near hall provides convenient shielding from cosmic radiation
- Accelerator Division has developed superb cleaning facilities for SCRF that enable increasing COUPP sensitivity
- Scientific and engineering expertise with bubble chambers is increasingly rare, but common at Fermilab
- As project organically grows, management expertise at Fermilab will become more important

The COUPP continues

- Increasing target mass to 60 kg
- Upgrading 2 kg device with larger synthetic silica jar to demonstrate reduction in surface events

COUPP 60 Kilogram Chamber

- Moved to DZero yesterday
- Engineering run at DZero will proceed in the next months only missing water purification and CF₃I handling systems
- Plans to move underground are in discussion

COUPP 20 kg Chamber

- Now producing data
- Surface event rate is promising

FCPA Retreat, April 2009

COUPP 1 Liter Revisited

- Upgraded inner vessel now holds 4 kg target liquid
- Surface events impose deadtime limitation (30 s per event)
- 1 Liter inner glass vessel being replaced by a synthetic silica vessel

COUPP Risks

- Competitive spin-dependent sensitivity requires ~10³ reduction in backgrounds
- Total event rate (surface events) is constrained by dead time
- Proliferation of bubble chambers is spreading the collaboration

Conclusions

- Fermilab is a world leader in direct detection of dark matter
- World class experiments (CDMS, COUPP)
- World class facilities (Fermilab engineering, MINOS near hall, Soudan laboratory)
- World class R&D (DAMIC, Solid Xenon, Dualphase Argon TPC)